Επικαιρότητα - News | 4-6 2002 | 7-12 2002 | 1-6 2003 | 7-12 2003 | 1-6 2004 | 7-12 2004 | Photo Gallerie | Mensa Spesial Interest Groups |

 

 

 

 

 

One famous series

 
Κείμενο: Δημήτρη Μποσκαΐνου
Text by Dimitri Boscainos
 


One famous series in mathematical puzzles' paraphilology is the following:

1
11
21
1211
111221

Eric Weisstein describes this as the Look and Say sequence http://mathworld.wolfram.com/news/2004-10-13/google/, item 3) In his view, the next term is
312211

The problem becomes more challenging when one notices that for the given terms of the series, the sum of the numbers in each term gives the terms of the Fibonacci series from the second one on, namely 1,2,3,5,8,13,21 and so on and so forth ad vitam aeternam. I divide the terms of the Look and Say series in pairs and proceed to derive the next term in the series by Looking and Saying each pair separately. So the series would go like this, in my book:
1
11
21
12 | 11
11 | 12 | 21
21 | 11 | 12 | 12 | 11
12 | 11 | 21 | 11 | 12 | 11 | 12 | 21
11 | 12 | 21 | 12 | 11 | 21 | 11 | 12 | 21 | 11 | 12 | 12 | 11

and so on and so forth, ad vitam aeternam.
The sum of the numbers in each term of the series is the (n+1)th Fibonacci number. From the third term of this series on,
1) Taking f(n) pairs from the beginning of the term where f(n) is the nth Fibonacci number (f(n)=1 for the third term, f(n)=1 for the fourth term, f(n) =2 for the fifth term and so on) we reach a division point where the sum of the numbers on the left hand side equals f(n+2) and the sum of the numbers on the right hand side equals f(n+1).
2) The number of pairs in the series recapitulates the sum of the numbers in the series from the first term on.
3) The number of twos in the series gives the Fibonacci series.
4) The number of ones in the series gives the Lucas series
(1,3,4,7,11,18,29...)

Now isn't that beautiful and original?

Dimitri Boscainos
Translator and Amator Mathesi









*********************************
Οι σελίδες μας έχουν δεχθεί επισκέψεις μέχρι σήμερα.
*********************************




Επιστροφή στα περιεχόμενα.
Hellenic Mensa Magazine on Line



 




           



************
Παρακαλούνται τα μέλη που έχουν σε αρχείο για Η/Υ τα άρθρα τους που πρόκειται να εμφανιστούν εδώ,
να τα στέλνουν στην διεύθυνση:
natsinas@hotmail.com


************


Με τον μετρητή που ακολουθεί φαίνονται και οι προτιμήσεις
των περισσότερων από μας έτσι ώστε να διαμορφώνεται
καλύτερα το περιεχόμενο του Περιοδικού μας


*
***
*******
**********
*************

Flag counter since January 2, 2013 (when main counter at the top of the page had 627136 visits):

Flag Counter

Shinystats:


*************
**********
*******
***
*